

POMPY TŁOCZKOWE DLA OBIEGU OTWARTEGO

Eaton PVQ - pompy tłoczkowe o zmiennej wydajności

Table of Contents

Introduction
PVQ10 and PVQ13
Model Number System
Controls (Compensators)
Performance Curves
Operating Data
Installation Dimensions
Shaft Options
Controls

PVQ20 and PVQ32

Model Number System	. 16
Controls (Compensators)	. 18
Performance Curves	. 19
Operating Data	
Shaft Torque Data	. 21
Installation Dimensions	. 23
Controls	. 25
Thru-drives	. 29

PVQ25

Model Number System	31
Controls (Compensators)	33
Performance Curves	34
Operating Data	
Controls	36
Shaft Options	
Controls	38

PVQ40 and PVQ45

Model Number System	43
Controls (Compensators)	45
Performance Curves	46
Operating Data	
Controls	49
Thru-drives	56
Application Data	60

Introduction

PVQ piston pumps are in-line, variable displacement units and are available in nine sizes. Displacement is varied by means of pressure and/or flow compensator controls. An impressive assortment of control options offers maximum operating flexibility.

PVQs operate at quietness levels that meet today's demanding industrial conditions. The sound level of each unit approaches or is below that of the electric motor driving it. Sound is reduced by a patented timing arrangement that also produces low pressure "pulses" in the outlet flow. This leads to reduced tendencies for noise in systems using PVQs.

The PVQ series is capable of operating with many types of hydraulic fluid. Water-content and phosphate ester fluids can be accommodated, in addition to the typical petroleum based and synthetic fluids. Many PVQ pumps are available in a thru-drive configuration to accommodate a multitude of application and installation requirements. Thru-drive models can be coupled to various types and sizes of fixed and variable displacement pumps, resulting in a compact and versatile package. Such a package offers lower installed cost by reducing the installation size and by requiring only one mounting pad on the prime mover.

Quiet PVQs have excellent operating characteristics, and the pumps' many control and mounting options allow choosing the optimum model for any application. Additionally, PVQs possess the same durability and long life characteristics expected of the best industrial products in today's marketplace. For over 75 years, the Eaton name has been synonymous with long trouble-free service.

Operating Data

Q Series Displacement, Speed, and Pressure Ratings

DISPLACEMENT,	SPEED,	AND	PRESSURE	RATINGS	

Model Number System	Maximum Geometric Displacement cm ³ /r (in ³ /r)	Rated Speed r/min	Maximum Pressure bar (psi)
PVQ10	10,5 (0.643)	1800	210 (3000)
PVQ13	13,8 (0.843)	1800	140 (2000)
PVQ20	21,1 (1.290)	1800	210 (3000)
PVQ25	25,2 (1.540)	1800	210 (3000)
PVQ32	32,9 (2.010)	1800	140 (2000)
PVQ40	41,0 (2.500)	1800	210 (3000)
PVQ45	45,1 (2.750)	1800	186 (2700)

Application Data

Fluid Cleanliness

- Hydraulic Fluids and Temperature Ranges
- Fire Resistant Fluids
- Installation and Start-upOrdering Procedure
- ordening Frocedure

Model Number System

PVQ10 and PVQ13

	1	2	3	4	Į	5	6	7	8)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28			-
[Ρ	V	' Q	1	(0	Α	2	R	5	Ε	1	S	2	0	С	*	2	1	V	*	1	1	В	D	1	2	S	*			
Nos	Fea	atur	e			С	ode		Descri	ptio	on						No	os	Feat	ture				Code		Desc	ripti	on		-		
1,2,3 4,5			s PVC		in	F V C	/		Inline Variat Quiet 10,5 (sei	volu ries	ime		210) har		15	,16	Cor	ntrol	type			C**\	/**B	abov Stan	ve w idaro	/ith lo d loa	oad- d-se	nsator (sensing nsing s i); range	etting	5
1,0	CC		and			re	3		(3000 13,8 ((2000	ps c/r ps	ii) ev (ii)	0.84	cir)	, 14() bar											blee Exar	d-do nple	own e: C2	orific 1V1	50 psi); ce. 1B indic ator wit	ates	
6,7			ting f icatio		ge		А2 ЛА		Flang Flang (availa only)	e IS	50 3	3019	/2-8	0A2	НW									C**\	/**P	210 11 bi	bar ar Ic	pres bad-s	sure	e setting e differe nsator v) and ential.	
8			on vie shaft			F L			Right Left h																	load	-sen ve, b	nsing out w	as (/ith l	C**V** bleed-do	В	
9,10		orts, catio	type on	and	k		SE SS		SAE (1.062 and c SAE (1.312 (optic	5″i utle D-rii 5″i	inle et (s ng s inle	t stanc side	lard port) t,										C**V	C**B	Pres load sam load	sure -sen e as -sen	e cor ising s C*; ising	npe . Co * abo sett	nsator v mpensa ove. Sta ting is 2 17-31 ba	ator Indard 4 bar	
11	Sh	afts	s, inpi	ut		1			Straig modii long						ō″												-450) psi). W	ith blee		
						3 N			Spline 16/32 Shaft (availa only)	DF end	o m d IS	ajor O 30	dia. 019/	fit 2 E2	ON	-								C**V	'C**P	load	-sen /e, b	nsing out w	. Sa /ith I	nsator v me as (bleed-do	C**VC*	*B
12	Se	eals				S F			Buna Fluor					nal										CG			lified			nsator raulic re	emote	
13,14		ımp ımb		gn		2	0		Desig chang dime for de	ie. I nsio	Inst ons	allati rema	on ain u			d								CD*	*	stan	pen darc	sato d 210	r. PV) bar	/Q10: C setting		\$
15,16	Co	ontr	ol typ	е		С	**		Press PVQ1 C21, bar (3 in ter PVQ1 C14, of 13 02-14 (350-1	0: \$ indi 00(s o 3: \$ ndi 3 ba in	Star icati 0 ps of ba Star icati ar (2 ten:	ndarc ing s si); ra ar (3! ndarc ing fa 2000 s of	d ma ettii ange 50-3 d ma acto psi	odel ng of e is 0 000 odel ory se	f 210)2-21 psi). is etting]								UV		PVQ 140 rang requ cust Unlo	13: bar e (2 iire l ome oadir imul	CD1 setti 4-14 low r er (20 ng Va lator	4 is ng c 0 ba ang 2-100 alve circ		units	
						C	°M*	*	Low Stanc indica 69 ba 02-10 (350-	lard iting r (1 in	l ma g fa 000 ten:	odel ctory) psij s of	is C / se ; ra	:M7, tting	of																	

Model Number System

PVQ10 and **PVQ13**

																																	_
_	1	2	3		4	5	6	7		8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	_		
	Ρ	V	Q		1	0	A	2	2	R	S	Ε	1	S	2	0	C	*	2	1	V	*	1	1	В	D	1	2	S	*			
Nos	Fea	ature	•				Code	е	I	Desci	ripti	on						No	os	Feat	ure			C	ode		Desc	ripti	on				
17,18	Pr€	essi	ure s	set	ting	ļ	21 14								VQ1 VQ1				5,26 7,28		trol		0	1: S			O-rii Sha	0			, ,		
19,20	Flc)W C	ontr	ol	opt	ion	Blar V VC	۱k	I	No fl	low	con	trol					21	,20		on s			S			Briti Thre (ISC	sh S ads R2	Stand Cou 88 tl	dard Intei hrea	Parall bore l ds). C		
21,22	dif	fere	sens ntia ure s	ľ	ting	I	Blar 11 24	۱k	I	No fl	low	con	trol											S	9		cont Spe	igur cial	CG	ns. com		tor for	
23	Flo)W C	ontr	ol	opt	ion	Blar B P	۱k	I	No fl	low	con	trol																		valve		
24		spla tion	cem	nen	t		Blar D	۱k	(displ Adju	ace stat	mer ble r	nt st naxi	op (: mur	maxi stano n optio	dard).																

RATINGS

Model Number System	Maximum Geometric Displacement cm ³ /r (in ³ /r)	Rated Speed r/min	Maximum Pressure bar (psi)	Input Power at Max. Pressure and Rated Speed kW (hp)	Approx. Weight kg (Ib)
PVQ10	10,5 (0.643)	1800	210 (3000)	7,4 (10)	7,2 (16)
PVQ13	13,8 (0.843)	1800	140 (2000)	6,5 (8.75)	7,2 (16)

Pressure Limits:

Case pressure – 0,35 bar (5 psig) maximum Inlet pressure – 0,2 bar (5 in. Hg) vacuum to 2 bar (30 psig)

Pressure Compensators

The pressure compensator control automatically adjusts pump delivery to maintain volume requirements of the system at a preselected operating pressure. Maximum pump delivery is maintained to approximately 3,4 bar (50 psi) below the pressure setting before being reduced. The pressure compensator control operates on one side of center and has an adjustment range as designated in the model numbering system.

Pressure Compensator with Adjustable Maximum Displacement Stop

The adjustable maximum stop pressure control enables the maximum pump delivery to be externally adjusted from 25% to 100% while maintaining all of the standard features of a pressure compensated pump. To assist initial priming, manual adjustment control setting must be at least 40% of maximum flow position.

Remote Control Pressure Compensator

Exactly the same as the "C" (pressure compensation option) except the machine operator is able to change the compensator setting through the use of a remote pilot relief valve, such as Eaton C-175.

Electric Dual Range Pressure Compensator

The dual range pressure compensator control automatically adjusts pump delivery to maintain volume requirements of the system at either of two preselected operating pressures. Maximum pump delivery is maintained to approximately 3,4 bar (50 psi) below either pressure control setting before being reduced.

Control type and pressure range are designated in the model number system.

Note: Graphic symbols shown with external valve(s) and cylinder to illustrate typical usage.

Load-sensing and Pressure Limiting Compensators

This compensator provides loadsensing control under all pressure conditions up to the desired maximum. It automatically adjusts pump flow in response to a remote pressure signal and maintains outlet pressure at a level slightly above load pressure. The integral pressure limiter overrides the load-sensing control, reducing pump displacement as the preset maximum operating pressure is reached.

Standard load-sense differential pressure settings, by control type, follow. See model number system for setting range.

Standard load-sensing and pressure limiting control with 11 bar differential pressure (standard factory setting). Includes bleed-down orifice to exhaust load-sense signal for low-pressure standby condition.

Same as C**V11B above, but with bleed-down orifice plugged.

Same as C**V11B, but with factory differential pressure setting of 24 bar.

Same as C**V11P, but with factory differential pressure setting of 24 bar.

Performance Curves PVQ10

Oil type: SAE 10W Oil temperature: 49°C (120°F) Inlet: 0.2 bar (5 in. Hg)

Note: To obtain full flow operation of pump, pressure compensator setting must be 14 bar (200 psi) above desired operating pressure. Full flow curves were obtained with compensator settings 14 bar (200 psi) above 210 bar (3000 psi) max. rated pressure.

Performance Curves PVQ13

Oil type: SAE 10W Oil temperature: 49°C (120°F) Inlet: 0.2 bar (5 in. Hg)

Note: To obtain full flow operation of pump, pressure compensator setting must be 14 bar (200 psi) above desired operating pressure. Full flow curves were obtained with compensator settings 14 bar (200 psi) above 210 bar (3000 psi) max. rated pressure.

Operating Data PVQ10 and PVQ13 Sound Data

Temperature: 50°C (120°F) Test Fluid: URSA-ED (10W) Inlet Pressure: Atmospheric (0 psig)

		Sound Le	evel dB(A)*			
		Full Stro	ke	Cutoff		
Speed r/min	Pressure bar (psi)	PVQ10	PVQ13	PVQ10	PVQ13	
1000	35 (500)	51	53	43	42	
	70 (1000)	55	54	48	50	
	100 (1500)	56	55	50	52	
	140 (2000)	57	61	51	56	
	175 (2500)	59	_	51	_	
1200	35 (500)	53	54	46	44	
	70 (1000)	55	54	49	52	
	100 (1500)	56	58	51	56	
	140 (2000)	57	65	53	57	
	175 (2500)	60	-	54	-	
1500	35 (500)	56	56	47	44	
	70 (1000)	59	59	49	51	
	100 (1500)	59	60	51	55	
	140 (2000)	60	67	53	56	
	175 (2500)	62	-	53	-	
1800	35 (500)	58	58	52	49	
	70 (1000)	60	61	53	56	
	100 (1500)	62	63	55	58	
	140 (2000)	63	-	57	-	
	175 (2500)	65	-	57	-	

*Sound pressure data equivalent to NFPA Standard.

Note: To ensure maximum noise reduction at full flow conditions, Engineering recommends limiting pressure of PVQ10 to 175 bar (2500 psi) and PVQ13 to 100 bar (1500 psi) at 1800 rpm.

PVQ10 and PVQ13 Response Data

Yoke response recorded at rated speed and pressure, 0 psi inlet, 82°C (180°F), SAE 10W oil. Pressure rise was 6900 bar (100,000 psi) per second.

RESPONSE DATA

	PVQ10	PVQ13		
Control Type	On stroke	Off stroke	On stroke	Off stroke
Pressure compensator	0.040 sec.	0.020 sec.	0.048 sec.	0.016 sec.

Installation Dimensions

PVQ10 and PVQ13 with Rear Ports

Millimeters (inches)

EATON Vickers Q Series Piston Pumps Catalog V-PP-MC-0002-E December 2002 10

Shaft Options

Shaft Options

Electric Dual Range Pressure Compensator Control

Adjustment

- With the directional valve deenergized, loosen locknut "5" and turn the adjusting screw "4" to the desired first stage pressure setting, then tighten locknut "5".
- 2. With solenoid de-energized, turn adjusting spool " 1" counterclockwise (CCW) until nut "3" is bottomed in adjusting screw slot. (Second stage setting is now equal to first stage pressure setting.) Turn adjusting spool clockwise (CW) to desired second stage pressure requirements. One complete turn of adjusting spool equals approximately 41 bar (600 psi) Energize solenoid and check pressure setting. De-energize solenoid and re-adjust if necessary. Secure this setting by tightening locknut " 2".

_C 1. Adjusting spool — sets 288,5 second stage pressure (11.36)B 2. Locknut—17,3 (0.68) across flats 3. Locknut-must be contained within slot of adjusting screw as shown 4. Adjusting screw 25,4 (1.00) across flats—sets first stage pressure 5. Locknut-31,7 (1.25) across flats 158,7 (6.25) 158,7 (6.25) 50 (1.97) Position for Dual range pressure R.H. models compensator position Electrical conduit conn.1/2 NPTF thd.

Solenoid Data (110V AC 50 Hz and 115/120V AC 60 Hz)

Solenoid current	Inrush amps (R.M.S.)	Holding amps
115/120V AC 60 Hz - 110V AC 50 Hz	2.0	.54 .64*

*Maximum peak inrush amps approximately 1.4 x R.M.S. value shown. Refer to catalog GB-C-2015B for additional solenoid valve data.

Electric Dual Range Pressure Compensator with Maximum Displacement Stop

Maximum Flow Adjustment

With the system pressure below both compensator settings, loosen maximum stop adjusting screw locknut and adjust screw to desired flow position (turning screw clockwise decreases flow and turning screw counterclockwise increases flow). To lock screw in position tighten locknut. To assist initial priming, adjust control setting to at least 40% of maximum flow position.

Compensator Control

- 1. With the directional valve de-energized, loosen locknut " 5" and turn the adjusting screw "4" to the desired first stage pressure setting, then tighten locknut " 5".
- 2. With directional valve de-energized, turn adjusting spool "1" counterclockwise until nut "3" is bottomed in adjusting screw slot. (Second stage setting is now equal to first stage pressure setting.) Turn adjusting spool clockwise to desired second stage pressure requirements. One complete turn of adjusting spool equals approximately 41 bar (600 psi). Energize solenoid and check pressure setting. De-energize solenoid and re-adjust if necessary. Secure this setting by tightening locknut " 2".

Controls Unloading Valve Control

With the unloading valve control the variable pump will unload at a preset pressure. The pump will maintain this no flow, low pressure (approximately 14 bar [200 psi]) standby condition, until system pressure drops to about 85% of the preset unloading pressure. The pump will then return on stroke and provide full flow until the preset unloading pressure is reached again.

With this control, an efficient accumulator charging circuit is obtained. The pump will provide full flow to fill the accumulator until the maximum charging pressure is reached. The pump then goes to a standby condition until the accumulator pressure drops to 85% of the desired maximum. The accumulator is then recharged as the cycle starts over again.

A separate right angle check valve must be provided to maintain the accumulator hydraulic charge and prevent back flow when the pump is unloaded. The check valve's internal leakage must not exceed five drops per minute. The control port must be connected to system pressure, downstream of the check valve.

Adjustment range

 PVQ10
 100-210 bar (1500-3000 psi)

 PVQ13
 100-140 bar (1500-2000 psi)

 Cut-in pressure is 85% of unloading pressure, minimum.

Setting Pressures

- Back out accumulator unloading pressure adjustment screw to below desired unloading pressure.
- 2. Adjust desired standby pressure.
- Set accumulator pressure by screwing in the accumulator unloading adjustment screw. Accumulator recharge (cut-in) pressure is a function of the maximum accumulator pressure and is not adjustable.
- 4. Check pressure settings and re-adjust if necessary.

Model Number System PVQ20 and

PVQ32

	1	2	3	4	- 5	5	6	7	8	9	10	11	12	13	14	4 15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
F	C	V	Q	2	2 0)	Α	2	R	Α	9	S	Ε	1	S	5 2	1	C	*	2	1	۷	*	1	1	В	D	1	2	S	*	
Nos	Fe	eatu	e				Cod	le		Descri	ption							Nos	Fe	eature	Э			Cod	le	D	escrip	otion				
1,2,3	S	Serie	s PV	Q			P V Q			Inline Varial Quiet	ole vo	olur												CⅣ	1**	i	Stand ndica	ard r ting	noc fact	lel is ory s	CM7 settin	g of
4,5	С	Displa c/rev ating	/ and		nt in ressi	ure	20 32			21,1 (3000 32,9 (2000) psi) cc/re	v (2												C*;	*V**	(B F)2-10 350-2 Press	in te 2000 ure c	ens psi com	of ba). pens	sator	C**, as
6,7		/lour peci					B2 Me			Flang Flang (availa only)	e ISO	D 3	019/2	-100/	42F											i k	Stand s 11 l bar (1 lown	ard I bar (* 50-2 orifi	oad 160 50 p ce.	-sens psi); psi); v Exan	rang with nple:	setting e 10-17 bleed-
8		Rotat rom					R L			Right Left h																C		ensa	tor	with	3 PVC 210	
9,10					ithou ailabh		Bla A9 A11			No th SAE . spline SAE . spline	J744 e witl J744	82- h si	2 (SA de po	orts o	only	/)								C*'	*V**	1 PF I	1 bai Press bad-s ibove	r load ure d ensi e, but	d-se com ng a t wi	nse pens as C* th ble		*В
11,12		Ports ocati		e a	nd		SE SS			SAE 1.625 (stand SAE 1.625 (optic	D-rin " inle dard) D-rin " inle	ēt a g si	nd ou ide po	utlet ort,										C*	*VC	**B 	oad-s same oad-s	ure c ensi as C ensi	com ng. 2** ng s	pens Com abov settir		ator andard 24 bar
13	S	Shaft	s, inj	out			1 3 N 28			Straig modi Spline 16/32 Shaft	iht ke fied, d S/ DP end ble v oth s in P nt on	2.3 AE ISO vith plir VQ	1" lor " B" r jor dia 3019 0 " MB 0 ed st 20/32	ng nodif a. fit /2 E2 // mc naft (sing	fied 25N 5un Eat	it only) ton). to								C** CG CD		(c *P F li c t r c E	250-4 lown Press bad-s C**V(bleed- Press nodif contro Electr	150 p orifi ure c ensir C**E dow ure c ied fo bl. ic du	osi). ce. com ng. S abo n or compor hy al ra	With pens Same ove, l ifice oens ydrau	a blee sator e as but w plugo ator ulic re comp	ed- with /ith ged. mote pensator.
14	S	Seals					S F			Buna Fluor	N, s			onal												k	oar se	etting	of I	high	range	rd 210 e 014 is
15,16		Pump Iumb		sigr	ſ		21			Desiç chanç rema 10-19	ģe. Ir in un	nsta	allatio	n din	ner	nsions										r r c	ange equir :ustoi	(24- ⁻ e lov mer i	140 v rar (20- ⁻	bar). nge t 100 k	Both o be bar).	of high units set by
17,18	С	Contr	ol ty	pe			C*:	*		psi); r (350-:	lard r iting ange 3000 el is C g of e is 02	noo sett s is (psi 214, 138 2-14	del is ting o 02-21). PV(, indic bar (4 in te	C21, f 210 in te 232: ating 2000) ba ens Sta) fao) ps	ar (300 of bar andard ctory si);								UV								imultor details.

Model Number System PVQ20 and PVQ32

	1 P	2 V	3 Q	4 2	5 0	6 A	7 2	8 R	9 A	10 9	11 S	12 E	13 1	14 S	15 2	16 1	17 C	18 *	19 2	20 1	21 V	22 *	23 1	24 1	25 B	26 D	27 1	28 2	29 S	30	
Nos 19,20		eatur essi		settir	ng	Coo 21 14	de	2	10 b	•			PVC PVC				Nos 27,28		eature ontro		sign		Cod 12 12	e	C*		tion nd C and)	
21,22	Flo	ow (cont	rol o	ptio	n Bla V VC	Ink	N	o flo	W C	ontro	bl					29,30) Si	oecia	ıl pu	mp		13 21 S2		U٧	, CÈ	2)**)** (up m	CG	30		(C)**P
23,24	dit	ffere	entia		ng	Bla	ink	N	o flc	W C	ontro	bl							otion				S3		Th (IS	ead O R	ls Co	ount thre	erb eads	'	
25			cont nal fe	rol eatur	es	Bla B P	ink	N	o flc	W C	ontro	bl											S9		co Sp	nfigi ecia	urati I CG	ons 6 coi	mpe		or for
26	Сс	ontro	al op	tion		Bla D	ink	d A	ispla djus	cem table	ent s ma	stop ximi	e ma (sta um (opt	ndaı	rd)										ma	dula	ated	reli	ef v	alves	5

RATINGS

Model Number System	Maximum Geometric Displacement cm³/r (in³/r)	Rated Speed r/min	Maximum Pressure bar (psi)	Input Power at Max. Pressure and Rated Speed kW (hp)	Approx. Weight kg (Ib)	
PVQ20	21,1 (1.290)	1800	210 (3000)	14,9 (20)	14 (31)	
PVQ32	32,9 (2.010)	1800	140 (2000)	15,6 (21)	14 (31)	

Pressure Limits:

Case pressure – 0,35 bar (5 psig) maximum Inlet pressure – 0,2 bar (5 in. Hg) vacuum to 2 bar (30 psig)

Pressure Compensator Controls

The pressure compensator control automatically adjusts pump delivery to maintain volume requirements of the system at a preselected operating pressure. Maximum pump delivery is maintained to approximately 75 psi (PVQ20) or 100 psi (PVQ32) below the pressure setting before being reduced. The pressure compensator control operates on one side of center and has an adjustment range as designated in the model numbering system.

Pressure Compensator Control with Adjustable Maximum Displacement Stop

The adjustable maximum stop pressure control enables the maximum pump delivery to be externally adjusted from 25% to 100% while maintaining all of the standard features of a pressure compensated pump. To assist initial priming, manual adjustment control setting must be at least 40% of maximum flow position.

Remote Control Pressure Compensator

Exactly the same as the "C" (pressure compensation option) except the machine operator is able to change the compensator setting through the use of a remote pilot relief valve, such as Eaton C-175.

Electric Dual Range Pressure Compensator Control

The dual range pressure compensator control automatically adjusts pump delivery to maintain volume requirements of the system at either of two preselected operating pressures.

Maximum pump delivery is maintained to approximately 75 psi (PVQ20) or 100 psi (PVQ32) below either pressure control setting before being reduced.

Control type and pressure range are designated in the model number system.

Note: Graphic symbols shown with external valve(s) and cylinder to illustrate typical usage.

Load-sensing and Pressure Limiter Compensator Control

This compensator provides load-sensing control under all pressure conditions up to the desired maximum. It automatically adjusts pump flow in response to a remote pressure signal and maintains outlet pressure at a level slightly above load pressure. The integral pressure limiter overrides the load-sensing control, reducing pump displacement as the preset maximum operating pressure is reached.

Standard load-sense differential pressure settings, by control type, follow. See model number system for setting range. Standard load-sensing and pressure limiting control with 11 bar differential pressure (standard factory setting). Includes bleeddown orifice to exhaust loadsense signal for low-pressure standby condition.

Same as C**V11B above, but with bleed-down orifice plugged.

Same as C**V11B, but with factory differential pressure setting of 24 bar.

Same as C**V11P, but with factory differential pressure setting of 24 bar.

Performance Curves

PVQ20

Oil type: SAE 10W Oil temperature: 49°C (120°F) Inlet: 0.2 bar (5 in. Hg)

Note: To obtain full flow operation of pump, pressure compensator setting must be 14 bar (200 psi) above desired operating pressure. Full flow curves were obtained with compensator settings 14 bar (200 psi) above 210 bar (3000 psi) max. rated pressure.

Performance Curves PVQ32

Oil type: SAE 10W Oil temperature: 49°C (120°F) Inlet: 0.2 bar (5 in. Hg)

Note: To obtain full flow operation of pump, pressure compensator setting must be 14 bar (200 psi) above desired operating pressure. Full flow curves were obtained with compensator settings 14 bar (200 psi) above 140 bar (2000 psi) max. rated pressure.

Operating Data PVQ20 and PVQ32 Sound Data

Temperature: 50°C (120°F) Test Fluid: URSA-ED (10W) Inlet Pressure: Atmospheric (0 psig)

		Sound Le	evel dB(A)*			
		Full Stro	ke	Cutoff		
Speed r/min	Pressure bar (psi)	PVQ20	PVQ32	PVQ20	PVQ32	
1000	35 (500)	53	58	43	47	
	70 (1000)	56	59	47	50	
	140 (2000)	57	61	52	54	
	210 (3000)	59	-	54	-	
1200	35 (500)	55	61	43	47	
	70 (1000)	58	62	48	51	
	140 (2000)	59	63	52	54	
	210 (3000)	61	-	55	-	
1500	35 (500)	57	63	47	50	
	70 (1000)	59	65	51	54	
	140 (2000)	61	65	56	55	
	210 (3000)	62	_	59	-	
1800	35 (500)	60	66	50	53	
	70 (1000)	62	67	53	56	
	140 (2000)	63	68	58	62	
	210 (3000)	64	_	58	_	

*Sound pressure data equivalent to NFPA Standard.

PVQ20 and PVQ32 Response Data

Yoke response recorded at rated speed and pressure, 0 psi inlet, 82°C (180°F), SAE 10W oil. Pressure rise was 6900 bar (100,000 psi) per second.

RESPONSE DATA

REDI ONDE DATA					
	PVQ20		PVQ32		
Control Type	On stroke	Off stroke	On stroke	Off stroke	
Pressure compensator	0.070 sec.	0.023 sec.	0.080 sec.	0.020 sec.	
load-sense compensator	0.090 sec.	0.015 sec.	0.100 sec.	0.018 sec.	

Shaft Torque Data

PVQ20/32A9 and PVQ20/32A11

Thru-drive Shaft Torque Data

Any deviation from these maximum torque values must be approved by Eaton engineering.

THRU-DRIVE SHAFT TORQUE DATA

Model Number System*	Input Shaft Code	Maximum Input Torque Total Nm (Ib. in.)	Maximum Thru-drive Torque Output Nm (Ib. in.)
PVQ20/32A9	1	135 (1200)	
	3	208 (1850)	58 (517)
	Ν	337 (2987)	
PVQ20/32A11	1	135 (1200)	
	3	208 (1850)	123 (1100)
	N	337 (2987)	

*SAE "B" 4 inch thru-drive pilot not available in PVQ20/32 frame size.

Installation Dimensions

Rear Ports, "C" and "CM" Controls, No. 1 Shaft

diameter fit. 13 teeth 16/32 pitch 0.8125 pitch diameter (ref.) 0.7335/0.7225 minor diameter

"N" Shaft with "MB" Flange

(Flange and shaft end ISO 3019/21000A2HW-E25N)

Remote Compensator

Adjustment

- 1. Turn pressure control (such as C-175) CCW to minimum setting.
- Turn compensator adjustment plug to desired minimum pressure (17 bar, 250 psi or higher).
- 3. Full pressure range can now be obtained with pressure control.

Caution: Effective compensator pressure will be compensator control setting (17-69 bar, 250-1000 psig) plus remote relief valve setting.

.4375-20 UNF-2B _____ Do not operate pur thread for "CG" control models. with this port plugg Connect to pressure control, such as C-175. SAE O-ring boss connection .250 O.D. tubing

Pressure Compensator Control with Adjustable Max. Displacement Stop

Adjustment

Loosen locknut on adjusting rod. Turn adjusting rod clockwise (CW) to decrease maximum pump delivery or counterclockwise (CCW) to increase maximum pump delivery until desired setting is obtained. Secure this setting by tightening locknut.

Electric Dual Range Pressure Compensator Control

Adjustment

- With the directional valve deenergized, loosen locknut "5" and turn the adjusting screw "4" to the desired first stage pressure setting, then tighten locknut "5".
- 2. With solenoid de-energized, turn adjusting spool "1" counterclockwise (CCW) until nut "3" is bottomed in adjusting screw slot. (Second stage setting is now equal to first stage pressure setting.) Turn adjusting spool clockwise (CW) to desired second stage pressure requirements. One complete turn of adjusting spool equals approximately 41 bar (600 psi). Energize solenoid and check pressure setting. De-energize solenoid and re-adjust if necessary. Secure this setting by tightening locknut " 2".

Solenoid Data (110V AC 50 Hz and 115/120V AC 60 Hz)

Solenoid current	Inrush amps (R.M.S.)	Holding amps
115/120V AC 60 Hz – 110V AC 50 Hz	2.0	.54 .64*

*Maximum peak inrush amps approximately 1.4 x R.M.S. value shown. Refer to catalog GB-C-2015B for additional solenoid valve data.

Electric Dual Range Pressure Compensator with Maximum Displacement Stop

Maximum Flow Adjustment

With the system pressure below both compensator settings, loosen maximum stop adjusting screw locknut and adjust screw to desired flow position (turning screw clockwise decreases flow and turning screw counterclockwise increases flow). To lock screw in position, tighten locknut. To assist initial priming, adjust control setting to at least 40% of maximum flow position.

Compensator Control

- With the directional valve deenergized, loosen locknut "5" and turn the adjusting screw "4" to the desired first stage pressure setting, then tighten locknut "5".
- 2. With directional valve deenergized, turn adjusting spool "1" counterclockwise until nut "3" is bottomed in adjusting screw slot. (Second stage setting is now equal to first stage pressure setting.) Turn adjusting spool clockwise to desired second stage pressure requirements. One complete turn of adjusting spool equals approximately 41 bar (600 psi). Energize solenoid and check pressure setting. De-energize solenoid and re-adjust if necessary. Secure this setting by tightening locknut " 2".

Unloading Valve Control

With the unloading valve control the variable pump will unload at a preset pressure. The pump will maintain this no flow, low pressure (approximately 14 bar [200 psi]) standby condition, until system pressure drops to about 85% of the preset unloading pressure. The pump will then return on stroke and provide full flow until the preset unloading pressure is reached again.

With this control, an efficient accumulator charging circuit is obtained. The pump will provide full flow to fill the accumulator until the maximum charging pressure is reached. The pump then goes to a standby condition until the accumulator pressure drops to 85% of the desired maximum. The accumulator is then recharged as the cycle starts over again.

A separate right angle check valve must be provided to maintain the accumulator hydraulic charge and prevent back flow when the pump is unloaded. The check valve's internal leakage must not exceed five drops per minute. The control port must be connected to system pressure, downstream of the check valve.

Adjustment range

PVQ20	100-210 bar
	(1500-3000 psi)
PVQ32	100-140 bar
	(1500-2000 psi)

Cut-in pressure is 85% of unloading pressure, minimum.

Setting Pressures

- Back out accumulator unloading pressure adjustment screw to below desired unloading pressure.
- 2. Adjust desired standby pressure.
- Set accumulator pressure by screwing in the accumulator unloading adjustment screw. Accumulator recharge (cut-in) pressure is a function of the maximum accumulator pressure and is not adjustable.
- 4. Check pressure settings and re-adjust if necessary.

Thru-drives

PVQ20/32 "A9" and "A11" SAE "A"

Thru-drives

PVQ20/32 "A9" and "A11" SAE "A"

PVQ20/32 "A9" AND "A11" SAE "A"

			Installation Dim	ensions mm (in)	
Model Number System	Spline Data	Max. Torque Nm (in. lb.)	A	В	Coupling Kit
"A9"	ASA B5.15-1960 9 teeth 16/32 DP Flat root side fit	58 (517)	16,7 (0.66)	33,0 (1.30)	02-136810
"A11"	ANS B92.1-1970 11 teeth 16/32 DP Flat root side fit	123 (1100)	18,5 (0.73)	39,1 (1.54)	02-306041
	A H H				

Note: O-ring included with pump. Coupling kit, cap screws, and washers must be ordered separately to mount rear pump.

Typical	TYPICAL REAR P	UMPS (WITH SHAFT CODES)	FOR PVQ20/32 THRU-DRIVES	
	Model Series	Typical Rear Pump	Rear Pump Shaft Code	Thru-drive Coupling Kit
Rear Pumps		PVQ10/13	3	
(with shaft codes)	"A9"	PVB5/6	S124 suffix	02-136810
for PVQ20/32	~7	V10	11	02-130010
		V20	62	
Thru-drives	Note: "A11" (not	listed above) is intended for	special application only.	

Model Number System

PVQ25

	1	2	3	4	5	6	,	7	8	9	10	11	12	12	1/	15	16	17	12	10		20 21	2))	22	2/	25	26		27 28	2	29	30	31	
[1	_	-	-			1			I			i –	1	1	-			- 1			1		1		-				1
	Ρ	V	Q	2	5	A	•	R	1	1	Α	A	1	0	В	1	1	2	4	0		0 A		2	0	0	1	Α		P (2	9	0	1]
Nos 1,2 3,4 7 8,9	,5,6	Co Dis Inp Fro	ature de til splace out sh out sh	tle eme haft i houn	rota			F C L F C C	225A	Leff Rigl 2 B 22.: sha incl 2 B 13T spli 2 B	en ci 2cm t-har ht-ha olt E 2 [.8 ft (S udeo olt E 16/ ned olt E	ircuit ³ /r [1 and ro and r 8 (SA 8] DI AE J d 3 (SA 3 (SA 3 (SA	.54 i tation otati E J74 A str 744-2 E J74 E J74	n ³ /r] n (CC on (C 44-10 22-1) 44-10 1 [1.6 44-10	CW) CW) 1-2) t key , key 01-2) 52] lc 01-2)	ved v with ong with		No 13 14	5	poi	agi int	nostic			ure	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		No o Elec Con cont Unio circu Adju com Adju	dia ctr np tro oa uit us np us	iption agnos bensat ol valve iding v table p ensate table p ensate table l ol pres	l ra or alv ore or ore or	ange wit ve (a essu	e pre h din accur are are a alic re	essu ectic mula nd fl	re onal tor ow
								1	0	Sha [.98	nft-2 84] D	64DI Bolt ' IA st uded	√Dİ∕/ raigł	IA A	with	25.0		15,		unl set	loa ttir	0	/alv	e		3)7 3	206 [300	.8 00	72.4 bi -213.7 -3100	b: Ibi	ar f/in2	<u>2]</u>		
10,	11		ain po ation		d siz	е		A	U	SAE UN	E J5	ts; tu 14, s pres SAE	uctio	n 1.6	525-1			17,	18	or u	un	r comp nload V dby		ettii	ng	1	00 1 24	9.65	5-1 75	ow cor 12.41 -25.51 <u>2]</u>	Dar	- [14	0-18	0 lb	
10									Ŵ	Enc ISC pre	d por) 614 ssur	rts; tu 19-1, e – N	suct //27	ion N x 2	/142			19,	20			ondary pensat		set	ting)0)4	sett	in .2	-193.1	5		·		
12		Dra	ain p	ort s	size			6 7 8 E	, ,	M1 bot M1	8 me tom 8 me	etric etric (D2) ertic UNF	O-rin O-rir	g po ng po	rt– ort–	shafi		21				rol spe ires	ecia	al		C A E	٩	No s Blee Exte	sp ed eri	becial dowr nal ma tment	n c ani	rific	се –	e	
								C		.750 por .750	0-16 t – b 0-16	op (C UNF ottor UNF haft	-2B n (D -2B	2)		0		22				imum aceme	ent	ор	tion	1 2		Adju	us	lard di table (set a	ma	axin	านm	disp	lace-

Note: Consult an Eaton representative for additional settings

Model Number System

PVQ25

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	Ρ	V	Q	2	5	Α	R	1	1	Α	Α	1	0	В	1	1	2	4	0	0	Α	2	0	0	1	Α	Ρ	С	9	0	1
No: 23,		Au		e ry m tput				ode 0	Des No outp	auxil	iary	mou	Intin	g or																	
25		Sh	aft s	eals			0 1 3 4		Vitro Flur	ndar on o ocar 3R s	d sh ptior bon haft	aft s		nitril er	e)																
26,	27	Sp	ecia	l feat	tures	5	Α	ΑP	Cas timi		n ho	usin	g an	d inc	lustr	ial															
28,	29	Pai	int					0 D	No Blue																						
30				ner a catic		unit	0)		nber	anc	asse I buil te																			
31		De	sign	l cod	le		Д	٨	Firs	t																					

Note: Consult an Eaton representative for additional settings

RATINGS

Model	Maximum Geometric	Rated	Maximum	Input Power at Max.	Approx.	
Number	Displacement	Speed	Pressure	Pressure and Rated Speed	Weight	
System	cm³/r (in³/r)	r/min	bar (psi)	kW (hp)	kg (Ib)	
PVQ25	25,2 (1.54)	1800	210 (3000)	16 (24)	14 (31)	

Pressure Limits:

Case pressure – 0,35 bar (5 psig) maximum Inlet pressure – 0,2 bar (5 in. Hg) vacuum to 2 bar (30 psig)

"G" Option

Pressure Compensator Controls

The pressure compensator control automatically adjusts pump delivery to maintain volume requirements of the system at a preselected operating pressure. Maximum pump delivery is maintained to approximately 75 psi (PVQ025) below the pressure setting before being reduced. The pressure compensator control operates on one side of center and has an adjustment range as designated in the model numbering system.

Pressure Compensator Control with Adjustable Maximum Displacement Stop

The adjustable maximum stop pressure control enables the maximum pump delivery to be externally adjusted from 25% to 100% while maintaining all of the standard features of a pressure compensated pump. To assist initial priming, manual adjustment control setting must be at least 40% of maximum flow position.

"J" Option

Remote Control Pressure Compensator

Exactly the same as the pressure compensation option, except the machine operator is able to change the compensator setting through the use of a remote pilot relief valve, such as Eaton C-175.

"C" Option

Electric Dual Range Pressure Compensator Control

The dual range pressure compensator control automatically adjusts pump delivery to maintain volume requirements of the system at either of two preselected operating pressures.

Maximum pump delivery is maintained to approximately 75 psi (PVQ025) below either pressure control setting before being reduced.

Control type and pressure range are designated in the model number system. **Note:** Graphic symbols shown with external valve(s) and cylinder to illustrate typical usage.

"H" Option

Load Sensing and Pressure Limiter Compensator Control

This compensator provides load-sensing control under all pressure conditions up to the desired maximum. It automatically adjusts pump flow in response to a remote pressure signal and maintains outlet pressure at a level slightly above load pressure. The integral pressure limiter overrides the load-sensing control, reducing pump displacement as the preset maximum operating pressure is reached.

Standard load-sense differential pressure settings, by control type, follow. See model number system for setting range.

Standard load-sensing and pressure limiting control with 11 bar differential pressure (standard factory setting). Includes bleeddown orifice to exhaust loadsense signal for low-pressure standby condition.

Other Standard Load Sense Options:

- 1. Bleed-down orifice plugged.
- 2. Factory differential pressure setting of 24 bar.

EATON Vickers Q Series Piston Pumps Catalog V-PP-MC-0002-E December 2002

PVQ25 Performance Curves

Performance at 1800 r/min Oil type: SAE 10W Oil temp: 50° C (120° F) Inlet pressure: 0 psi

PVQ25 Operating Data Sound Data

Temperature: 50°C (120°F) Test Fluid: URSA-ED (10W) Inlet Pressure: Atmospheric (0 psig)

		Sound Level dB(A)*	
Speed r/min	Pressure bar (psi)	Full Stroke	Cutoff
1000	35 (500)	56.5	54.9
	70 (1000)	57.7	58.3
	100 (1500)	58.6	60.0
	140 (2000)	59.5	61.3
	175 (2500)	60.9	62.0
	210 (3000)	66.6	63.1
1200	35 (500)	60.9	56.9
	70 (1000)	62.4	60.1
	100 (1500)	63.1	62.3
	140 (2000)	63.3	63.6
	175 (2500)	63.8	64.5
	210 (3000)	63.8	65.5
1500	35 (500)	61.9	57.7
	70 (1000)	63.5	61.9
	100 (1500)	64.2	62.7
	140 (2000)	65.3	63.3
	175 (2500)	65.1	64.7
	210 (3000)	65.9	65.3
1800	35 (500)	64.0	59.0
	70 (1000)	65.2	62.0
	100 (1500)	66.0	63.4
	140 (2000)	67.1	64.4
	175 (2500)	67.5	65.7
	210 (3000)	67.4	66.6

*Sound pressure data equivalent to NFPA Standard.

Response Data

Yoke response recorded at rated speed and pressure, 0 psi inlet, 82°C (180°F), SAE 10W oil. Pressure rise was 6900 bar (100,000 psi) per second.

Control Type	On stroke	Off stroke
Pressure compensator	0.030 sec.	0.012 sec.
Load sense compensator	0.040 sec.	0.012 sec.

PVQ25 with Pressure Compensator Control

Shaft Options

No. 1 Shaft

SAE " B" Straight keyed

No. 10 Mounting and Input Shaft (Flange and shaft end ISO 3019/21000A2HW-E25N)

Load Sensing with Pressure Limiter

Remote Compensator

Adjustment

- 1. Turn pressure control (such as C-175) CCW to minimum setting.
- 2. Turn compensator adjustment plug to desired minimum pressure (17 bar, 250 psi or higher).
- 3. Full pressure range can now be obtained with pressure control.

Caution: Effective compensator pressure will be compensator control setting (17-69 bar, 250-1000 psig) plus remote relief valve setting.

Pressure Compensator Control with Adjustable Max. Displacement Stop

Adjustment

Loosen locknut on adjusting rod. Turn adjusting rod clockwise (CW) to decrease maximum pump delivery or counterclockwise (CCW) to increase maximum pump delivery until desired setting is obtained. Secure this setting by tightening locknut.

Electric Dual Range Pressure Compensator Control

Adjustment

- With the directional valve de-energized, loosen locknut "5" and turn the adjusting screw "4" to the desired first stage pressure setting, then tighten locknut "5".
- 2. With solenoid de-energized, turn adjusting spool "1" counterclockwise (CCW) until nut "3" is bottomed in adjusting screw slot. (Second stage setting is now equal to first stage pressure setting.) Turn adjusting spool clockwise (CW) to desired second stage pressure requirements. One complete turn of adjusting spool equals approximately 41 bar (600 psi). Energize solenoid and check pressure setting. De-energize solenoid and re-adjust if necessary. Secure this setting by tightening locknut " 2".

Solenoid Data (110V AC 50 Hz and 115/120V AC 60 Hz)

Solenoid current	Inrush amps (R.M.S.)	Holding amps
115/120V AC 60 Hz – 110V AC 50 Hz	2.0	.54 .64*

*Maximum peak inrush amps approximately 1.4 x R.M.S. value shown. Refer to catalog GB-C-2015B for additional solenoid valve data.

Electric Dual Range Pressure Compensator with Maximum Displacement Stop

Maximum Flow Adjustment

With the system pressure below both compensator settings, loosen maximum stop adjusting screw locknut and adjust screw to desired flow position (turning screw clockwise decreases flow and turning screw counterclockwise increases flow). To lock screw in position, tighten locknut. To assist initial priming, adjust control setting to at least 40% of maximum flow position.

Compensator Control

- With the directional valve de-energized, loosen locknut "5" and turn the adjusting screw "4" to the desired first stage pressure setting, then tighten locknut "5".
- 2. With directional valve de-energized, turn adjusting spool "1" counterclockwise until nut "3" is bottomed in adjusting screw slot. (Second stage setting is now equal to first stage pressure setting.) Turn adjusting spool clockwise to desired second stage pressure requirements. One complete turn of adjusting spool equals approximately 41 bar (600 psi). Energize solenoid and check pressure setting De-energize solenoid and readjust if necessary. Secure this setting by tightening locknut " 2".

Unloading Valve Control – "E" Option

With the unloading valve control the variable pump will unload at a preset pressure. The pump will maintain this no flow, low pressure (approximately 14 bar [200 psi]) standby condition, until system pressure drops to about 85% of the preset unloading pressure. The pump will then return on stroke and provide full flow until the preset unloading pressure is reached again.

With this control, an efficient accumulator charging circuit is obtained. The pump will provide full flow to fill the accumulator until the maximum charging pressure is reached. The pump then goes to a standby condition until the accumulator pressure drops to 85% of the desired maximum. The accumulator is then recharged as the cycle starts over again.

A separate right angle check valve must be provided to maintain the accumulator hydraulic charge and prevent back flow when the pump is unloaded. The check valve's internal leakage must not exceed five drops per minute. The control port must be connected to system pressure, downstream of the check valve.

Adjustment range

PVQ25 100-210 bar (1500-3000 psi)

Cut-in pressure is 85% of unloading pressure, minimum.

Setting Pressures

- Back out accumulator unloading pressure adjustment screw to below desired unloading pressure.
- 2. Adjust desired standby pressure.
- Set accumulator pressure by screwing in the accumulator unloading adjustment screw. Accumulator recharge (cut-in) pressure is a function of the maximum accumulator pressure and is not adjustable.
- 4. Check pressure settings and re-adjust if necessary.

Model Number System PVQ40 and PVQ45

	1	2	3	4	5	6		78	9	10	11	12	13	14	15	16	17	18	19	2	0 21	22	23	24	25	26	2	7 28	29	30	31	
Γ	P	۷	Q	4	0	A	-	R 1		A	Α	1	0	В	1	1	2	4	0	0		1	A	A	-	A	F		D	0	1	1
Nos 1,2 3,4,5	(Featu Cod∉ Displ	e title		ıt	PV Q4	04	Descript Open A 41.0 A 45.1	circui cm³/r	[2.5	0 in³	/r]	p				Nos 12	[Featur Drain and Ic	n po	ort size ation	e	Code Description 1 .875-14 UNF-2B SAE O-ring port-1 2 .875-14 UNF-2B SAE O-ring port-1 bottom (D2)					ort -				
7 8,9	ו ו	Input rotat Front and i	ion : mo	unti		L R 01		Left-ha Right-l 2 Bolt 22.2 [.	nand B (SA 88] D	rotat AE J7 IA st	ion (744-1 traig	(CW) 101-2 ht ke)) wit ey sh	naft									3 6 7 8	sha M1 M1 M1	aft up 18 X 1 18 X 1 18 X 1) I.5 m I.5 m I.5 m	etri etric etri	3 SAE ic O-rin c O-rin ic O-rin	ng po g port ng po	ort – i – bo ort –	top (ottorr	D1) (D2)
								(SAE J 2 Bolt [1.00] (SAE J	B-B (DIA : 744-2	SAÉ straig 25-1)	J744 ght k (key	4-101 ey s r incl	l-2) v haft udeo	vith∶ d)			13		Diagr press		stic e port		0 1 2	.43 plu	375-2 Iggeo	0 UN 1	JF-2	pressi 2B SA ric O-I	ΕÖ-	ring		
						05 08 09 10		2 Bolt 16/32[2 Bolt 16/32[2 Bolt 32/64[Shaft-2	DP 41 B-B (DP sp B (SA DP sp 2 Bolt	.1 [1. SAE lined AE J7 lined VDN	62] J744 I sha 744-1 I sha ЛА А	long 4-101 Ift I01-2 Aft A wit	splir -2) v) wit	ned s vith h 26 0 [.9	shaft 15T T 84]		14	(Contr	roll	ler typ	e	C E G H J	wit Un Adj Adj Adj	th dir Ioadi justa justab justab	ectio ng va ble p ble pre ble h	ona alve ore: ess iyd	ge pre I cont e (acc ssure sure an raulic pensat	rol va umu com d flov remo	alve latoi pen v co	r circ satoi mpei	uits) nsator
10,11		Main ocat			size	AA		DIA st Side p suction	orts; 1 – 1.	tube 875-	por 12 U	ts pe	er SA	E J5	514,		15,1				re com ng valv		07 18 33	65. 182	.5-72 2.7-18	.4 ba 89.6	r [' ba	950-10 r [265 r [300)50 0-27	50 II	bf/in ²	
							:	1.3125 End po suction 1.3125 Side p	orts; t 1 – 1. -12 U	ube 875-´ N-2E	port 12 U 3	N-28	3, pr	essu	re –	_	17,18	(lloa	mp. set ad valv /	0		No 9.6 12.	flow 5-12 41-15	/ com .41 b 5.17	npe bar bar	ensato [140-1 r [180- ir [330	or se 180 li 220	tting bf/in Ibf/i	 ²] n²]	
						7.00		1.500 : 61); pr	SAE 4 essui	1-boli re – r	t spl 1.000	it fla 3 SA	nge	port	(cod		19,2		Secoi comp		lary setting		00 04					comp r [270				
						AD)	flange End po 1.500 (61); pr	orts; \$ SAE 4	SAE . 1-boli	J518 t spl	3 flar it fla	nge	port	(cod		21		Contr featui		specia s	al	0 A B	Ble	spece ed d terna	own	or		ke a	djus	tmer	nt
						AF		Filange Side p M48 X End po M48 X End po 1.500 X M12 X SAE 4 M10 X	port orts; 2, pi orts; 1 2, pi orts; 1 SAE 1.75 bolt	(code ISO SO 6 ressu SO 6 SO 6 1-boli thre split	e 61 6149 ure - 5149 ure - 5162 t spl ads; flanç) - M3 -1 tu - M3 - flan it fla pres	ube, 3 X Ibe, 3 X2 ge, s nge ssure	suct 2 sucti sucti port e – 1	ion - on – on – with		22	(Maxir displa optior	ace	um ement		1 2 (set	Adj		ble n	'na>	aceme ximun		plac	eme	nt

Note: Consult an Eaton representative for additional settings

Model Number System PVQ40 and PVQ45

F	2 v V	3 Q	4 4	5 0	6 A	7 R	8 1	9 1	10 A	11 A	12 1	13 0	14 B	15 1	16 1	17 2	18 4	19 0	20 0	21 A	22 1	23 A	24 2 A	25 26 1 /			8 29 C D		31 1	
Nos 23,24		ire iary n out sh		ting	00 AA AB	2 E 16/ 2 E 16/	auxi Solt A 32D Solt A 32D	iliary A (SA P ex A (SA P ex	AE JT terna AE JT terna	untin 744-8 al sp 744-8 al sp	32-2) Iinec 32-2) Iinec	w/ sha I sha w/ 1 I sha	9T aft 11T aft	shaft		25 26,2 28,2	7 \$		ial fe	ls eature	es	0 1 8 AP 00	No sh Stand HNBF Cast i No pa	ard s R shai ron h	haft ft sea	al (v	vater	glyco	ol)	ning
					AC AD AE	16/ 2 B 16/ 2 B	32 E Bolt E 32D Bolt E)P in 3 (SA P int 3 (SA	tern AE J erna AE J	744-1 al sp 744-1 il spl 744-1	linec 101-2 ined 101-2	ý cou) w/ cou) w/	uplin 15T pling 26T	-		30				and	unit	CD	Blue STD -	orime - mar odel	k ass				er, e code	е
					AH AJ AK	2 B 16/ 2 B 16/ 2 B	Solt A 32D Solt A 32D Solt E	A (SA P int A (SA P int 3 (SA	AE J erna AE J erna AE J	al sp 744-8 11 spl 744-8 11 spl 744-1 al spl	32-2) ined 32-2) lined 101-2	w/ 9 cou w/ 7 cou) w/	9T pling 11T pling 26T	,]		31	[Desię	gn co	ode		A	First o	desig	n					

 $\ensuremath{\textbf{Note:}}$ Consult an Eaton representative for additional settings

RATINGS						
Model Number System	Maximum Geometric Displacement cm ³ /r (in ³ /r)	Rated Speed r/min	Maximum Pressure bar (psi)	Input Power at Max. Pressure and Rated Speed kW (hp)	Approx. Weight kg (lb)	
PVQ40	41,5 (2.500)	1800	210 (3000)	27,6 (37)	20,6 (45.4)	
PVQ45	45,1 (2.750)	1800	186 (2700)	28,3 (38)	20,6 (45.4)	

Pressure Limits:

Inlet pressure – Case pressure – 0,2 bar (5 in. Hg) vacuum to 2 bar (30 psig) 0,35 bar (5 in. Hg) maximum

Note: Integral relief valve limits case pressure peaks to 0,7 bar (10 psi) higher than inlet pressure to protect pump. Flow from valve is returned directly to pump inlet. Use of case drain line required to limit steady-state case pressure.

"G" Option

Pressure Compensator Controls

This control automatically varies pump displacement to meet the system flow demand for a constant system pressure. Displacement starts to reduce to zero within 14 bar (200 psi) of the compensator setting. Power draw-off is minimized, therefore, system relief valves should not be required.

Pressure Compensator Control with Adjustable Maximum Displacement Stop

The adjustable maximum stop pressure control enables the maximum pump delivery to be externally adjusted from 25% to 100% while maintaining all of the standard features of a pressure compensated pump. To assist initial priming, manual adjustment control setting must be at least 40% of maximum flow position.

"J" Option

Remote Control Pressure Compensator

Exactly the same as the "C" (pressure compensation option) except the machine operator is able to change the compensator setting through the use of a remote pilot relief valve.

"C" Option

Electric Dual Range Pressure Compensator Control

The dual range pressure compensator control automatically adjusts pump delivery to maintain volume requirements of the system at either of two preselected operating pressures.

Maximum pump delivery is maintained to approximately 3,4 bar (50 psi) below either pressure control setting before being reduced.

Control type and pressure range are designated in the model number system.

Note: Graphic symbols shown with external valve(s) and cylinder to illustrate typical usage.

"H" Option Load Sensing and Pressure Limiter Compensator Control

This compensator provides loadsensing control under all pressure conditions up to the desired maximum. It automatically adjusts pump flow in response to a remote pressure signal and maintains outlet pressure at a level slightly above load pressure. The integral pressure limiter overrides the load-sensing control, reducing pump displacement as the preset maximum operating pressure is reached.

Standard load-sense differential pressure settings, by control type, follow. See model number system for setting range.

Standard load-sensing and pressure limiting control with 11 bar differential pressure (standard factory setting). Includes bleeddown orifice to exhaust loadsense signal for low-pressure standby condition.

Other Standard Load Sense Options:

- 1. Bleed-down orifice plugged.
- 2. Factory differential pressure setting of 24 bar.

Performance Curves

PVQ40

Oil type: SAE 10W Oil temperature: 82°C (180°F) Inlet: 0 psi

Note: To obtain full flow operation of pump, pressure compensator setting must be 14 bar (200 psi) above desired operating pressure. Full flow curves were obtained with compensator settings 14 bar (200 psi) above 210 bar (3000 psi) max. rated pressure.

Model Series PVQ45

Oil type: SAE 10W Oil temperature: 82°C (180°F) Inlet: 0 psi

Note: To obtain full flow operation of pump, pressure compensator setting must be 14 bar (200 psi) above desired operating pressure. Full flow curves were obtained with compensator settings 14 bar (200 psi) above 186 bar (2700 psi) max. rated pressure.

Operating Data PVQ40 and PVQ45 Sound Data

Temperature: 50°C (120°F) Test Fluid: URSA-ED (10W) Inlet Pressure: Atmospheric (0 psig)

		Sound Level dB(A)*		
Speed r/min	Pressure bar (psi)	Full Stroke	Cutoff	
1000	35 (500)	60	58	
	70 (1000)	61	61	
	140 (2000)	63	65	
	210 (3000)*	65	65	
1200	35 (500)	61	60	
	70 (1000)	62	62	
	140 (2000)	65	65	
	210 (3000)*	66	68	
1500	35 (500)	65	61	
	70 (1000)	67	64	
	140 (2000)	68	67	
	210 (3000)*	68	69	
1800	35 (500)	68	60	
	70 (1000)	69	65	
	140 (2000)	69	68	
	210 (3000)*	71	70	

*PVQ40 at 210 bar (3000 psi) and PVQ45 at 186 bar (2700 psi) **Sound pressure data equivalent to NFPA Standard.

Response Data

Yoke response recorded at rated speed and pressure, 0 psi inlet, 82°C (180°F), SAE 10W oil. Pressure rise was 6900 bar (100,000 psi) per second.

Control Type	On Stroke	Off Stroke
Pressure compensator	0.050 sec.	0.020 sec.
Load sense compensator	0.040 sec.	0.010 sec.

Side Port Controls, No. 2 Mounting and Input Shaft

Millimeters (inches)

Pressure Compensator with Load Sensing

Remote Control

Comp. control port location for R.H. rotation .4375-20 UNF-2B thd. SAE O-ring boss connection .250 O.D. tubing

Pressure Compensator Control with Adjustable Maximum Displacement Stop

Adjustment

Loosen locknut on adjusting rod. Turn adjusting rod clockwise (CW) to decrease maximum pump delivery or counterclockwise (CCW) to increase maximum pump delivery until desired setting is obtained. Secure this setting by tightening locknut. To assist initial priming, manual adjustment control setting must be at least 40% of maximum flow position.

This control enables the maximum pump delivery to be externally adjusted from 25% to 100% while maintaining all of the standard features of a pressure compensated pump. **Note:** Not available with thru-drive models.

Electric Dual Range Pressure Compensator with Maximum Displacement Stop

See preceding page and following page for adjustment procedures.

Solenoid Data^a (110V AC 50 Hz and 115/120V AC 60 Hz)

Solenoid current	Inrush amps (R.M.S.)	Holding amps
115/120V AC 60 Hz - 110V AC 50 Hz	2.0	.54 .64*
*Maximum neak inru	ish amns	annrovi

mately 1.4 x R.M.S. value shown.

Refer to catalog GB-C-2015B for additional solenoid valve data.

"Note: Any sliding spool valve, if held shifted under pressure for long periods of time, may stick and not spring return due to fluid residue formation and, therefore, should be cycled periodically to prevent this from happening.

Electric Dual Range Pressure Compensator Control

Adjustment

- With the directional valve deenergized, loosen locknut "5" and turn the adjusting screw "4" to the desired first stage pressure setting, then tighten locknut "5".
- With solenoid de-energized, turn adjusting spool "1" counterclockwise (CCW) until nut "3" is bottomed in adjusting screw slot. (Second stage setting is now equal to first stage pressure setting.) Turn adjusting spool clockwise (CW) to desired second stage pressure requirements. One complete turn of adjusting spool equals approximately 41 bar (600 psi). Energize solenoid and check pressure setting.

De-energize solenoid and readjust if necessary. Secure this setting by tightening locknut " 2".

Solenoid Data^a (110V AC 50 Hz and 115/120V AC 60 Hz)

Solenoid current	Inrush amps (R.M.S.)	Holding amps
115/120V AC 60 Hz - 110V AC 50 Hz	2.0	.54 .64*

*Maximum peak inrush amps approximately 1.4 x R.M.S. value shown. Refer to catalog GB-C-2015B for additional solenoid valve data.

"Note: Any sliding spool valve, if held shifted under pressure for long periods of time, may stick and not spring return due to fluid residue formation and, therefore, should be cycled periodically to prevent this from happening.

Unloading Valve Control – "E" Option

With the unloading valve control the variable pump will unload at a preset pressure. The pump will maintain this no flow, low pressure (approximately 14 bar [200 psi]) standby condition, until system pressure drops to about 85% of the preset unloading pressure. The pump will then return on stroke and provide full flow until the preset unloading pressure is reached again.

With this control, an efficient accumulator charging circuit is obtained. The pump will provide full flow to fill the accumulator until the maximum charging pressure is reached. The pump then goes to a standby condition until the accumulator pressure drops to 85% of the desired maximum. The accumulator is then recharged as the cycle starts over again.

A separate right angle check valve must be provided to maintain the accumulator hydraulic charge and prevent back flow when the pump is unloaded. The check valve's internal leakage must not exceed five drops per minute. The control port must be connected to system pressure, downstream of the check valve.

Adjustment range

PVQ40	100-210 bar
	(1500-3000 psi)
PVQ45	100-186 bar
	(1500-2700 psi)
Cut-in pr	essure is 85% of

unloading pressure, minimum.

Setting Pressures

- Back out accumulator unloading pressure adjustment screw to below desired unloading pressure.
- 2. Adjust desired standby pressure.
- Set accumulator pressure by screwing in the accumulator unloading adjustment screw. Accumulator recharge (cut-in) pressure is a function of the maximum accumulator pressure and is not adjustable.
- 4. Check pressure settings and re-adjust if necessary.

PVQ40 and PVQ45 SAE "A"

PVQ40 and PVQ45 SAE "B"

AA	ASA B5.15-1960 9 teeth 16/32 DP Flat root side fit	58 (517)	10,92 (0.43)	9T/9T	864224
AB	ANS B92.1-1970 11 teeth 16/32 DP Flat root side fit	118 (1050)	12,57 (0.495)	11T/11T	864325
	Special Eaton		24,89 (0.98)	26T/26T	627168
AE	26 teeth 32/64 DP	179 (1587)	10,92 (0.43)	26T/13T	864307
	Flat root side fit		20,56 (0.81)	26T/15T	475134

Note: Coupling, screws, and washers must be ordered separately to mount rear pump. "A" O-ring (AS568-042) and "B" O-ring (AS568-155) are included with each thru-drive pump. Couplings for "B26" are step type for 13 and 15 tooth as shown.

Shaft Torque Data PVQ40/45

THRU-DRIVE SHAFT TORQUE DATA

Shaft	Input Shaft Code	Maximum Input Torque Total Nm (Ib. in.)	Maximum Thru-drive Torque Output Nm (Ib. in.)
	2	215 (1900)	
т	5	208 (1850)	
9T	8	337 (2987)	58 (517)
	2	215 (1900)	
14.7	5	208 (1850)	102 (1100)
I1T	8	337 (2987)	——— 123 (1100)
	2	215 (1900)	
хт	5	208 (1850)	170 (1507)
6T	8	337 (2987)	——— 179 (1587)

Note: Both input and output limits must be met.

Typical Rear Pumps (with Shaft Codes) for PVQ40/45 Thru-drives

Thru-drive shaft	Typical Rear Pump	Rear Pump Shaft Code	Thru-drive Coupling
	PVQ10/13	3	
OT	PVB5/6	S124 suffix	
9T	V10	11	864224
	V20	62	
		2	864307
	PVE012	28	627168
		3	864307
	PVQ20/32	28	627168
0/T		3	864307
26T	PVQ40/45	4	475134
		28	627168
	V2010 OR V2020	11	864307
	20V	151	864307
	2520V	166	475134

Note: 11T (not listed above) is intended for special application only.

TYPICAL REAR PUMPS (WITH SHAFT CODES) FOR PVQ40/45 THRU-DRIVES

PVQ40 and PVQ45 Pump Support Bracket

An optional support bracket should be used when a heavy second pump is mounted to a thru-drive PVQ40 or PVQ45. The support bracket (627179), two screws (199740), and two washers (427700) must be ordered separately.

Application Data Fluid Cleanliness

Proper fluid condition is essential for long and satisfactory life of hydraulic components and systems. Hydraulic fluid must have the correct balance of cleanliness, materials, and additives for protection against wear of components, elevated viscosity, and inclusion of air.

Essential information on the correct methods for treating hydraulic fluid is included in Eaton publication 561 "Eaton Guide to Systemic Contamination Control" available from your local Eaton distributor or by contacting Eaton. Recommendations on filtration and the selection of products to control fluid condition are included in 561.

Recommended cleanliness levels, using petroleum oil under common conditions, are based on the highest fluid pressure levels in the system and are coded in the chart below. Fluids other than petroleum, severe service cycles, or temperature extremes are cause for adjustment of these cleanliness codes. See Eaton publication 561 for exact details.

Eaton products, as any components, will operate with apparent satisfaction in fluids with higher cleanliness codes than those described. Other manufacturers will often recommend levels above those specified. Experience has shown, however, that life of any hydraulic component is shortened in fluids with higher cleanliness codes than those listed below. These codes have been proven to provide a long, trouble-free service life for the products shown, regardless of the manufacturer.

	System Pressure Level bar (psi)					
Product	<70 (<1000)	70-210 (1000-3000)	210+ (3000+)			
Piston Pumps – Variable	18/16/14	17/15/13	16/14/12			

Application Data

Hydraulic Fluids and Temperature Ranges

Use antiwear hydraulic oil, or automotive type crankcase oil designations SC, SD, SE or SF per SAE J183FEB80.

Select a viscosity grade that will allow optimum viscosity, between 40 cSt (180 SUS) and 16 cSt (80 SUS), to be achieved within the optimum performance envelope shown below.

For further information, see Eaton data sheet B-920 or I-286-S.

Fire Resistant Fluids

All pumps can be used with water glycol and polyol ester fluids. All pumps can be operated to 140 bar (2000 psi) with these fluids, except PVQ13 and PVQ32 which are limited to 105 bar (1500 psi). Input speed should not exceed 1800 r/min. System temperature should not exceed 54° C (130° F). Inlet vacuum should not exceed 101,6 millibar (3 in. Hg). For more information, refer to Eaton publication 579.

Installation and Start-up (Commissioning)

Before a pump is started, fill the case through the uppermost drain port with hydraulic oil of the type to be used. The case drain line must be connected to the reservoir below oil level.

For multiple pump arrangements that include non-PVQ sections, the requirements of the non-PVQ units must be considered.

Ordering Procedure

Order pumps by the full model designation. Pump displacement, mounting flange type, direction of rotation, pump configuration, shaft end type, seals, pressure adjustment range, and specific control functions are all specified in the full model number system.

Couplings, O-rings, capscrews and washers must be ordered separately for all thru-drive pumps.

CENTRALA ELBLĄG

ul. Rawska 19B 82-300 Elblag

tel. /+48/ 55 625 51 00 fax /+48/ 55 625 51 01

Dział Handlowy

tel. /+48/ 55 625 51 51 elblag@hydropress.pl

\square	 	 	 	 	 	 Γ
L	 	 	 	 	 	

www.hydropress.pl

ODDZIAŁ GDAŃSK

tel. /+48/ 55 625 51 21 fax /+48/ 55 625 51 22

ODDZIAŁ RUMIA tel. /+48/ 58 679 34 15 fax /+48/ 55 625 51 25

ODDZIAŁ TYCHY tel. /+48/ 32 787 52 88 fax /+48/ 55 625 51 38

ODDZIAŁ OLSZTYN tel. /+48/ 89 532 01 05 fax /+48/ 89 715 21 42

ODDZIAŁ WARSZAWA tel. /+48/ 22 468 86 97 fax /+48/ 55 625 51 32

BIURO WE WROCŁAWIU tel. /+48/ 782 838 000 fax /+48/ 55 625 51 35

> **BIURO W KIELCACH** tel. /+48/ 885 995 501 fax /+48/ 55 625 51 01

BIURO W KRAKOWIE tel./+48/885995019 fax /+48/ 55 625 51 01

BIURO W OPOLU tel. /+48/ 885 995 011 fax /+48/ 55 625 51 01

BIURO W BYDGOSZCZY tel. /+48/ 790 222 771 fax /+48/ 55 625 51 01

BIURO W BIAŁYMSTOKU tel. /+48/ 89 532 01 05 fax /+48/ 89 715 21 42

> **BIURO W ŁODZI** tel. /+48/ 609 221 421 fax /+48/ 89 715 21 42